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dimensional D1-D5-P black hole which represent near-horizon microstates in the limit

of large D1-charge. These generalize the corresponding solutions considered by Gaiotto,

Strominger and Yin for the 4-dimensional D0-D4 black hole. Using U-duality and a 4D-5D

connection, we argue that the relevant configurations are bound states of D1-branes that

have expanded through the Myers effect to form a Kaluza-Klein monopole wrapping the

black hole horizon. We show that these branes experience a magnetic field on their moduli

space, and that the degeneracy of lowest Landau levels reproduces the Bekenstein-Hawking

entropy.
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1. Introduction and summary

The microscopic accounting of the Bekenstein-Hawking entropy of black holes is one of the

successes of string theory [1, 2]. In most examples, such an accounting starts from the

observation that the entropy (or supersymmetric index) doesn’t depend on a coupling pa-

rameter and subsequently varying the coupling to a regime where a perturbative calculation

is possible.

In an alternative, and in some sense more direct, approach, Gaiotto, Strominger and

Yin have proposed to account for the black hole entropy from counting the supersymmetric

bound states of the constituent D-branes as probes in the near-horizon geometry of the

black hole [3]. We will refer to such probe configurations as ‘near-horizon microstates’

in what follows. In the case of the four-dimensional D0-D4 black hole and for large D0-

charge, the relevant probe configurations are particular bound states of D0-branes [4, 5].

An attractive feature of the approach is that it gives insight into the physical mechanism

behind the finite number of quantum states per unit horizon area of the black hole. The D0-

brane probes experience a magnetic field on the internal space, which effectively divides

the horizon into cells, each cell corresponding to a lowest Landau level ground state of

the D0-brane probe mechanics.1 A refined version of this approach was proposed in [7],

where it was argued that the probe brane quantum mechanics arises from the moduli space

1See [6] for an earlier application of Landau levels in black hole physics.

– 1 –



J
H
E
P
0
2
(
2
0
0
8
)
0
0
6

quantization of a multicentered solution carrying the same charges as the black hole. The

mirror type IIB black hole case was considered in [8], and further related work appears

in [9, 10].

In this work, we will generalize the near-horizon microstate approach to the case of

the five-dimensional ‘D1-D5-P’ black hole in type IIB carrying wrapped D1-brane and D5-

brane charges and momentum. We will construct near-horizon probes which are particular

bound states of D1-branes and give an accounting of the entropy for large D1-charge. As in

the four-dimensional examples, the degeneracy comes from counting lowest Landau levels

in a magnetic field on the moduli space of the probe branes.

Our motivation for transposing the approach of [3] to the D1-D5-P black hole of [1, 2]

is twofold. Firstly, in the D1-D5-P black hole there is a detailed understanding of the

microscopic physics in terms of a dual conformal field theory (see [11] for a review). Hence

we hope it will provide a good setting to address aspects of the near-horizon microstate

approach which are not fully understood at present, such as incorporating subleading cor-

rections to the entropy. A second motivation is that D1-D5 black holes provide the setting

for another approach to black hole physics that was advocated by Lunin and Mathur [12].

In this approach, black hole ‘hair’ is represented by a family of nonsingular, horizonless

classical supergravity solutions. For the D1-D5-P black hole, a subset of the microstate ge-

ometries is known [13]. It therefore seems a good starting point for trying to make contact

between both approaches.

We will now summarize the contents of this paper. We start by considering a four-

dimensional BPS black hole which carries 4 charges n,w,N,W with metric

ds2
4 = −(HnHwHNHW )−1/2dt2 + (HnHwHNHW )1/2(dr2 + r2dΩ2

2) (1.1)

and Bekenstein-Hawking entropy

S4 = 2π
√

nwNW. (1.2)

We will consider two different embeddings, related by a U-duality transformation, of such

a black hole in toroidally compactified type II string theory.

In the first duality frame, referred to as ‘frame A’ and described in section 2.1, the

charges correspond to D0-branes and D4-branes wrapping internal cycles. This is the

setting of [3]. The near-horizon microstates are bound states of D0-branes that have

expanded, through a form of the Myers effect [14], to form a D2-brane wrapping the

horizon S2. We review this solution and its symmetry properties in section 2.2. Quantum

mechanically, these D0-branes are described by a superconformal mechanics with SU(1, 1| 2)
symmetry. Because they experience a magnetic field from the D4-branes in the background,

as reviewed in section 2.3, their supersymmetric ground states have a large lowest Landau

level degeneracy, which accounts for the entropy (1.2).

The second duality frame we will consider, referred to as ‘frame B’ and described in

section 3.1, is an embedding as a ‘D1-D5-P-KK’ black hole [15, 16] in type IIB where the

charges come from D1-branes, D5-branes, momentum and Kaluza-Klein (KK) monopole

charge. The momentum and KK monopole charges produce nontrivial fibrations for two
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internal circles, such that the near-horizon geometry has a component that is locally AdS3

times a squashed three-sphere S3/ZW . Following the fate of the near-horizon microstate

probes under the U-duality to frame B, we find that the relevant configuration is a bound

state of D1-branes that has expanded to form a Kaluza-Klein monopole that wraps the

horizon S3/ZW . We construct such a configuration explicitly as a solution of the Kaluza-

Klein monopole worldvolume action [22 – 24] (reviewed in section 3.2) and show that it

has the expected symmetry properties in section 3.3. In section 3.4 we show that the

solution has a moduli space dynamics which includes a magnetic field, again reproducing

the entropy from the counting of lowest Landau levels.

In section 4, we argue that similar Kaluza-Klein monopole solutions play the role of

near-horizon microstates for the five dimensional black hole with D1-D5 and momentum

charges and metric

ds2
5 = −(HnHwHN)−2/3dt2 + (HnHwHN )1/3(dr2 + r2dΩ2

3). (1.3)

The argument uses a version of the 4D-5D connection [17 – 19]: by decompactifying one of

the internal circles, the D1-D5-P-KK black hole considered above lifts to a five-dimensional

D1-D5-P black hole in the center of an orbifold space R4/ZW . Since the size of the de-

compactified circle is a fixed scalar, the near-horizon geometry does not change under the

decompactification, and the relevant near-horizon probes are again bound states of D1-

branes expanded to form a Kaluza-Klein monopole. The special case W = 1 gives the

black hole in flat space (1.3), and counting the lowest Landau level degeneracy reproduces

its entropy

S5 = 2π
√

nwN. (1.4)

2. The D0-D4 black hole in type IIA

In this section we review some aspects of the near-horizon microstate approach for the

four-dimensional D0-D4 black hole in type IIA [3]. For simplicity, we consider a toroidal

N = 8 compactification throughout this paper, but the arguments could be repeated for

the case of a N = 4 compactification on T 2 × K3.

2.1 Background

We first consider type IIA compactified on a rectangular six-torus T 6 which we regard as

a product of two circles S1, S̃2 and two tori T 2, T̃ 2. We embed the 4-dimensional 1/8 BPS

black hole of (1.1) with charges n,w,N,W as a configuration consisting of D0-branes and

D4-branes wrapping internal cycles as follows:

(frame A) n D0-branes

w D4-branes wrapped on T 2 × T̃ 2

N D4-branes wrapped on S1 × S̃1 × T 2

W D4-branes wrapped on S1 × S̃1 × T̃ 2

– 3 –
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We will refer to this string theory embedding as ‘duality frame A’ in what follows. The

10-dimensional string metric is

ds2
10 = −(HnHwHNHW )−1/2dt2 + (HnHwHNHW )1/2(dr2 + r2dΩ2

2)

+
1

4

(

HnHw

HNHW

)1/2
(

R2dx2 + R̃2dx̃2
)

+

(

HnHW

HwHN

)1/2

ds2
T 2 +

(

HnHN

HwHW

)1/2

ds2
T̃ 2

Here, R and R̃ denote the radii of S1 and S̃1 on which we have chosen coordinates x, x̃

with periodicity 4π. We will work in the units 2π
√

α′ = 1, where the fundamental string

and D-brane charges take the value 2π. The harmonic functions are given in terms of the

quantized charges as

Hn = 1 + g∞
4πV

T6

n
r Hw = 1 + g∞

4π(2πR)(2πR̃)
w
r

HN = 1 + g∞
4πV

T̃2

N
r HW = 1 + g∞

4πV
T2

W
r

(2.1)

The dilaton and RR gauge fields are given by

eΦ = g∞H3/4
n (HwHNHW )−1/4

C(1) = − 1

g∞

(

1

Hn
− 1

)

dt; C(3) = − 1

4π
cos θdφ ∧

[

w ωS1×S̃1 + WωT 2 + NωT̃ 2

]

Here, the ωM2 are normalized volume forms satisfying
∫

M2
ωM2 = 1 and g∞ is the value

of the string coupling at infinity.

We will be interested in the near-horizon scaling limit of this geometry, which is ob-

tained by temporarily restoring α′ factors and taking

α′ → 0;
r

α′
,

R√
α′

,
R̃√
α′

,
VT 2

α′
,

VT̃ 2

α′
fixed (2.2)

In this limit, the above background reduces to an AdS2×S2×T 6 attractor geometry where

the AdS2 × S2 radius and the volumes of the tori S1 × S̃1, T 2 and T̃ 2 are fixed in terms

of the charges. Performing a coordinate change to global AdS2 coordinates

r = lA(cosh χ cos τ + sinhχ); t =
l2A
r

cosh χ sin τ (2.3)

as well as a gauge transformation on C(1), we obtain the near-horizon geometry

ds2
10 = l2A

[

− cosh2 χdτ2 + dχ2 + dθ2 + sin2 θdφ2
]

+

√

n

wNW

[

w

16π2

(

R

R̃
dx2 +

R̃

R
dx̃2

)

+
W

VT 2

ds2
T 2 +

N

VT̃ 2

ds2
T̃ 2

]

C(1) = − 1

4π

√

wNW

n
sinhχdτ ; C(3) = − 1

4π
cos θdφ

[

w ωS1×S̃1 + WωT 2 + NωT̃ 2

]

(2.4)

The AdS2 × S2 radius lA is given by

lA =
g

4π

√

wNW

n
. (2.5)
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Here, g denotes the value of the string coupling in the near-horizon region. The supergravity

description is reliable as long as g ≪ 1 and lA ≫ 1.

The near-horizon geometry preserves 8 Killing spinors, which combine with the

SL(2, R) isometry group of AdS2 and the SO(3) symmetry of S2 into an SU(1, 1|2) super-

isometry group. The Killing vectors generating the SL(2, R) component are given by

l0 = ∂τ

l± = e±iτ [tanh χ∂τ ∓ i∂χ] (2.6)

2.2 Horizon-wrapping membranes and their symmetries

The near-horizon microstates that capture the entropy of the D0-D4 black hole at large D0-

charge are particular bound states of D0-branes that have expanded to form a D2-brane,

wrapping the horizon S2, through a form of the Myers effect. These can be described as

noncommutative solutions in the multi-D0-brane action or, alternatively, as solutions of

the D2-brane action with D0-brane charge dissolved on the worldvolume. We will here

focus on the latter description and describe the probe solution and its properties in more

detail.

We consider a D2-brane probe in the background (2.4), wrapping the horizon S2, and

choose a static gauge such that the worlvolume coordinates coincide with τ, θ, φ. Turning

on woldvolume flux F on S2 induces Q units of D0-brane charge:

F =
Q

4π
sin θdθdφ.

Dimensionally reducing over the two-sphere, the Lagrangian describing the motion of such

a brane reads

L = −MlA

[

√

1 + ρ2

√

cosh2 χ − χ̇2 + sinhχ

]

. (2.7)

We have restricted attention to a D2-brane that is static on the T 6 for the time being. The

parameters M and ρ correspond to the mass of the wrapped D2-brane and the induced

D0-brane charge density on S2 respectively:

M = 4πl2ATD2 =
g

2

wNW

n
(2.8)

ρ =
Q

4πl2A
=

4πQ

g2

n

wNW
.

The isometries (2.6) of the background act as symmetries on the D2-brane worldvolume and

lead to Noether charges L0, L±, where L0 is the canonical Hamiltonian obtained from (2.7).

They are given by

L0 = cosh χ
√

P 2
χ + (MlA)2(1 + ρ2) + MlAρ sinh χ (2.9)

L± = e±iτ

[

tanh χL0 ± iPχ +
MlAρ

cosh ξ

]

(2.10)

These expressions are derived by varying the D2-brane action before gauge-fixing the world-

volume time coordinate, and the last term in (2.10) arises because the Wess-Zumino term
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is only invariant up a total derivative. From (2.7) or (2.9) we see that there is a static

solution where the brane is located at

sinhχ = −ρ.

The Noether charges (2.10) evaluated on this solution are [10]

L0 = MlA (2.11)

L± = 0 (2.12)

Hence the solution is ‘primary’ and, in addition, invariant under conformal boosts:

K = L+ + L− = 0. (2.13)

The supersymmetry properties of this solution were analyzed in [4], where it was shown to

preserve half of the near-horizon supersymmetries. Since it is static with respect to global

time τ instead of Poincaré time t, it breaks all of the Poincaré supersymmetries that extend

to the asymptotically flat region. Such branes are necessarily bound to the near-horizon

region and have an energy barrier preventing them to escape to asymptotic infinity.

2.3 Landau levels on moduli space and microstate counting

A important property of the horizon-wrapping membranes is that they experience a mag-

netic field, induced by the D4-brane charges in the background, on their moduli space. Due

to this fact, the supersymmetric ground states in the quantized theory have a large lowest

Landau level degeneracy which accounts for the black hole entropy, as we shall presently

review.

The energy of the probe solutions is independent of the position of the probe on T 6.

Hence these positions are bosonic moduli of our solution and the moduli space M equals

T 6. The moduli space mechanics is that of a particle moving on T 6, with kinetic terms

come from expanding the Born-Infeld action. The particle also couples (with charge 2π) to

a magnetic field which comes from the Wess-Zumino coupling
∫

C(3) to the D4-branes in

the background. From the expression (2.4), we see that this term gives rise to a magnetic

field with field strength

FM = w ωS1×S̃1 + WωT 2 + NωT̃ 2 (2.14)

Hence the particle moves in a magnetic field with w units of flux through S1× S̃1, W units

of flux through T 2 and N units of flux through T̃ 2.

The full quantum mechanical theory describing the low-energy dynamics of the horizon-

wrapping membrane was constructed in [5]. The theory realizes the superconformal algebra

SU(1, 1| 2) with a central charge MlA, with M given in (2.8). The corresponding BPS

bound is saturated by chiral primary states which satisfy (2.11). In [3], it was shown that

these chiral primaries are in one-to-one correspondence with lowest Landau levels in the

magnetic field FM. More precisely, by using a standard representation for the fermionic

zero modes on differential forms in moduli space, it was shown that chiral primaries are

represented by harmonic forms h with respect to a covariant derivative D̄:

D̄h = D̄†h = 0 (2.15)

– 6 –
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where D̄ = ∂̄ + ĀM and ĀM is a holomorphic connection for FM. Even forms represent

bosons while odd forms represent fermions. The number of solutions to (2.15) could be

computed by index theory as in [3] but, in the simple toroidal case we are considering,

one can also enumerate the solutions explicitly. On a single two-torus N units of magnetic

flux, there are harmonic (0,0) forms ΨJ and harmonic (1,0) forms ΨJdz. The ΨJ , where

J is an angular momentum quantum number running from 0 to N − 1, are lowest Landau

level wavefunctions on the torus whose explicit form can be found e.g. in [20]. In the case

at hand, we have a product space of three tori with magnetic field, and we get a total of

4wNW bosonic and 4wNW fermionic solutions.

It is important to observe that the number of chiral primaries does not depend on

the background D0-charge n, and for the purpose of state counting we can imagine all the

D0-charge to be carried by the probe branes. The total D0-charge n can then be divided in

many ways into clusters of D0-branes forming D2 bound states considered above. Counting

such multiparticle chiral primaries is equivalent to counting the degeneracy in a CFT with

4wNW bosons and 4wNW fermions at level n. The central charge c is 6wNW and the

degeneracy D(n) at large n is given by the Cardy formula

ln D(n) = 2π
√

nc/6 = 2π
√

nwNW

in agreement with the macroscopic entropy (1.2).

We end this section with some remarks:

• The above picture, where we counted bound states of D0-branes, was valid for black

holes which are ‘mostly made up out of D0-branes’ where the D0-charge n is para-

metrically larger than the D4-brane charges. As a result, the calculation does not

capture corrections to the entropy subleading in n, which can easily be seen from the

fact that the full D0-brane partition function is not U-duality invariant.

• We should also remark that the above calculation is not a fully controlled approxi-

mation: in the limit of parametrically large n where we did the microstate counting,

we see from (2.5) that it is not possible to keep both the string coupling small while

keeping the S2 radius large in string units. Strong coupling problems of this type are

typically resolved by going to a different duality frame where the approximations are

under control; this will be the case for the U-dual description we will consider in the

next section.

• We also observe that there is a similar picture of near-horizon microstates for black

holes which are ‘mostly made up out of D4 branes’, i.e. where one of the D4-charges

is parametrically larger than the other charges. This situation is T-dual to the case

considered above. The near-horizon probe solutions are now D6-branes which wrap

the horizon S2 and a four cycle, with worldvolume flux on the S2. The moduli space is

again a T 6, spanned by two transverse directions and four Wilson lines, and magnetic

fields on moduli space are produced by the couplings
∫

C(3) ∧ F ∧ F and
∫

C(7).

– 7 –
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IIA IIB IIB IIB

D0 D3 D3 D1(S1)

D4(T 2, T̃ 2) T (S̃1, T 2) D3 S D3 T (S1, S̃1, T 2) D5(S1, T 2, T̃ 2)

D4(S1, S̃1, T 2) −→ D1 −→ F1 −→ P(S1)

D4(S1, S̃1, T 2) D5 NS5 KK(S1, S̃1
TN, T 2, T̃ 2)

Table 1: Duality transformations relating frame A to frame B.

3. U-duality and the D1-D5-P-KK black hole

3.1 Duality chain

In this section we will describe an embedding of the 4-dimensional black hole (1.1) as a

‘D1-D5-P-KK’ black hole solution in type IIB, with the charges n,w,N,W corresponding

to D1, D5, momentum and Kaluza-Klein monopole charge respectively. This solution can

be obtained from the one in duality frame A in the previous section through a U-duality

transformation of the form TST as illustrated in Table 1. The final configuration, which

we will refer to as ‘duality frame B’, is

(frame B) n D1-branes wrapped on S1

w D5-branes wrapped on S1 × T 2 × T̃ 2

N units of momentum on on S1

W KK-monopoles, Taub-NUT direction S̃1, wrapped on S1 × T 2 × T̃ 2

In this duality frame, the S1 and S̃1 circles are fibred nontrivially due to the momentum

and KK monopole charges. The 10-dimensional metric is

ds2
10= (HnHw)−1/2

[

− 1

HN
dt2 + HN

(

R

2
dx − (1/HN − 1)dt

)2
]

(3.1)

+(HnHw)1/2
[

HW (dr2+r2dΩ2
2)+

R̃2

4HW
(dx̃−W cos θdφ)2

]

+(Hn/Hw)1/2(ds2
T 2 +ds2

T̃ 2)

The harmonic functions are now given by

Hn = 1 + g∞
4π(2πR̃)V

T2V
T̃2

n
r Hw = 1 + g∞

4π(2πR̃)
w
r

HN = 1 + g2
∞

4π(2πR)V
T6

N
r HW = 1 + R̃

2
W
r .

(3.2)

For the dilaton and RR fields, we have

eΦ = g∞H1/2
n H−1/2

w

C(2) = − R

2g∞
(1/Hn − 1) dt ∧ dx − w

16π2
cos θdφ ∧ dx̃ (3.3)

We now take a near-horizon scaling limit that matches the one we considered in frame

A (2.2), as well as a rescaling of t and a coordinate change (2.3). One of the gauge

transformations we performed in frame A now becomes a shift of the coordinate x, leading

– 8 –
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IIA T (S̃1, T 2) IIB S IIB T (S1, S̃1, T 2) IIB

D2(S2) −→ D5 −→ NS5 −→ KK (S1
TN, S3/ZW , T 2)

Table 2: Transformation of D-brane probes from duality frame A to frame B.

to a new variable by x′ with period 4π. We obtain an attractor geometry where, this time,

the fixed moduli are the radii of S1 and S̃1 and the volume of the 4-torus T 2 × T̃ 2:

ds2
10 = l2B

[

− cosh2 χdτ2 + dχ2 + dθ2 + sin2 θdφ2
]

+ k2(dx′ + A)2 + k̃2(dx̃ + Ã)2

+

√

n

w

ds2
T 2 + ds2

T̃ 2
√

VT 2VT̃ 2

C(2) =
1

g
(k2A ∧ dx′ + k̃2Ã ∧ dx̃) (3.4)

with the Kaluza-Klein scalars k, k̃ and one-forms A, Ã given by

k2 = l2B
N

nwW
; k̃2 =

l2B
W 2

; A = −
√

nwW

N
sinhχdτ ; Ã = −W cos θdφ. (3.5)

The radius lB is given by

lB =

√
g

4π

√
wW (3.6)

where g is the string coupling in the near-horizon region. We can trust the supergravity

description as long as g ≪ 1 and gwW ≫ 1.

In (3.4), the circles S1 and S̃1 are ‘Hopf’-fibered over AdS2 and S2 respectively so

as to form a space which is locally AdS3 × S3 with curvature radii lAdS3 = lS3 = 2lB .

Due to the compactness of x′ and the KK monopole charge W (when W > 1) however,

the space is not globally AdS3 × S3, but rather the product of ‘squashed’ AdS3 with the

squashed three-sphere S3/ZW [25]. The squashing preserves the left-moving isometry group

SL(2, R)L × SO(3)L, combining with fermionic generators into an SU(1, 1| 2) supergroup,

while the right-moving SL(2, R)R × SO(3)R is broken down to two U(1)’s which act as

translations of x′ and x̃. Hence we find the same super-isometry group as in frame A, as

of course we should. The Killing vectors generating SL(2, R)L are given by

l0 = ∂τ

l± = e±iτ

[

tanh χ∂τ ∓ i∂χ − 1

cosh χ
∂x′

]

(3.7)

Having discussed the duality transformation relating the D0-D4 black hole to the D1-

D5-P-KK black hole, we will now apply the same dualities to the near-horizon microstate

probes of frame A in order to find microstate probes in frame B. Under the U-duality

transforming frame A into frame B, a D2-brane wrapping S2 in frame A transforms as

indicated in table 2. The first arrow is essentially mirror symmetry, and leads to the

near-horizon probe picture discussed in [8]. The final probe configuration in frame B is a

Kaluza-Klein (KK) monopole wrapped on the near-horizon S3/ZW as well as on T 2 and

whose Taub-NUT direction is along S1. The configuration in frame A also carried D0-brane
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charge Q induced by worldvolume flux on S2. The KK-monopole probe in frame B similarly

has an appropriate woldvolume field turned on so as to induce D1-brane charge along S1.

We will construct such a solution explicitly in section 3.3 from the worlvolume action of

the KK monopole, and check that it carries the same Noether charges as its counterpart

in frame A. In section 3.4, we will show that its moduli space mechanics includes magnetic

fields of the correct magnitude.

3.2 The worldvolume action for a KK monopole

Let us first review some facts about the effective worldvolume description of KK-monopoles.

The worldvolume theory of a KK-monopole in type IIB is a (2, 0) theory in 5+1 dimensions,

and the collective coordinates organize themselves into a tensor multiplet [21]. The world-

volume dynamics, which is determined by dualities relating the KK-monopole to other

branes [23], cannot be captured by a covariant action due to the selfduality condition on

the tensor field. To avoid this difficulty, we will make use of the observation of [24] that,

after dimensional reduction to 4+1 dimensions, the tensor multiplet reduces to a (1, 1) vec-

tor multiplet which can be described by a covariant action. Therefore, if we consider KK

monopole which is wrapped on at least one compact direction, we can use a dimensionally

reduced 4+1 dimensional action, which can be obtained by T-dualizing the action for the

type IIA KK-monopole constructed in [22] along a worldvolume direction.

The wrapped KK-monopole action thus obtained can be formulated in spacetimes

which have two compact isometry directions: the first one, which we will call kµ, denotes

the Taub-NUT circle of the monopole, while the second one, k̃µ, is the circle on which

the monopole is wrapped. The field content is summarized in the table 3 and consists of

three scalars Xi, describing transverse fluctuations, two zero-forms ω(0), ω̃(0) (with field

strengths G(1), G̃(1)) which source fundamental and D-string charge along the Taub-NUT

direction kµ, and a one-form A(1) (with field strength F (2)).

We now place a KK-monopole probe in the
worldvolume field field strength

Xi -

ω(0) G(1)

ω̃(0) G̃(1)

A(1) F (2)

Table 3: Worldvolume fields appearing

in the KK monopole action.

background (3.4), taking the Taub-NUT direction

to be along the circle S1: kµ = (∂x′)µ. It will

be convenient to choose the wrapping direction to

be along the S̃1 circle so that k̃µ = (∂x̃)µ. The

wrapped KK-monopole action in this background

reduces to

S = −τKK

∫

d5σ k2k̃e−2Φ
√

− det(P [G̃]ab+k−2G(1)
a G(1)

b +e2Φk−2G̃(1)
a G̃(1)

b −eΦk−1k̃−1F (2)
ab )

+τKK

∫
[

P [ik̃ikN
(7)] +

1

2
P [Ã] ∧ F (2) ∧ F (2) + P [A] ∧ F (2) ∧ G(1) ∧ G̃(1)

]

(3.8)

Here, we have denoted pullbacks by P [. . .], while G̃µν is the metric on the 8-dimensional

base space over which the S1 and S̃1 circles are fibered:

G̃µν = Gµν − kµkν

k2
− k̃µk̃ν

k̃2
.
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The 7-form N (7) is a gauge potential for the 8-form field strength which is dual to the KK

one-form A, with

ik̃ikN
(7) =

2πP

τKK
ωT 2 ∧ ωS2 ∧ ỹ1dỹ2

VT̃ 2

.

The worldvolume field strengths entering in (3.8) are

G(1) = dω(0)

G̃(1) = dω̃(0) + P [ikC
(2)] (3.9)

F (2) = dA(1)/(4π)2 − P [ik̃C
(2)] ∧ G(1). (3.10)

The normalization constant τKK takes the value τKK = 8(2π)4 in our units, and is related

to the physical tension TKK as TKK = τKKk2k̃/g2.

3.3 Horizon-wrapping KK-monopoles and their symmetries

We shall now explicitly construct the KK-monopole probe solutions which will play the

role of near-horizon microstates of the D1-D5-P-KK black hole, and show that they have

the same symmetry properies as their counterparts in frame A. Choosing coordinates y1, y2

on T 2 and ỹ1, ỹ2 on T̃ 2, we will work in a static gauge where the worldvolume coordinates

are identified with τ, θ, φ, y1, y2. As discussed in section 3.1, we want to consider a KK-

monopole that carries induced D1-brane charge by turning on appropriate worldvolume

fields. Such a solution can be interpreted as a bound state of D1-branes that have expanded

into a KK monopole through the Myers effect. From the relation (3.9) we see that turning

on time-dependent ω̃(0) sources D1-brane charge along S1, so that the conserved momentum

conjugate to ω̃(0) will be proportional to the induced D1-brane charge.

The Lagrangian for such a KK monopole, dimensionally reduced over S2×T 2, is given

by

L = −MlB

√

cosh2 χ − (β ˙̃ω(0) − sinh χ)2 (3.11)

We have restricted attention to a static probe on T̃ 2 with constant gauge fields ω(0),A(1).

The constants M (representing the mass of the wrapped KK-monopole) and β are given

by

M = TKK4πl2B

√

n

w

√

VT 2

VT̃ 2

; β =
g

k2

(

N

nwW

)1/2

(3.12)

The momentum conjugate to ω̃(0) is related to the induced D1-brane charge Q as

Pω̃(0) = 2πQ. (3.13)

We observe from the form of (3.11) that the background fields in (3.4) have conspired

to produce a Lagrangian describing the motion of a particle on a locally AdS3 space, with

ω̃(0) playing the role of the Hopf fibre coordinate. Hence we can easily find the SL(2, R)L
Noether charges L0, L± from (3.7):

L0 = cosh χ
√

P 2
χ + (MlB)2(1 + ρ2) + MlBρ sinhχ (3.14)

L± = e±iτ

[

tanh χL0 ± iPχ +
MlBρ

cosh ξ

]

. (3.15)
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Here, L0 is the canonical Hamiltonian obtained from (3.11). To derive these expressions,

we have used (3.13) and defined ρ as ρ = 2πQ/MlBβ. With these definitions, the Noether

charges take precisely the same form as in frame A (2.10). Again, there is a static solution

which now represents a wrapped KK-monopole located at

sinhχ = −ρ. (3.16)

It has Noether charges L0 = MlB, L± = 0 and is the sought-after configuration U-dual to

the horizon-wrapping membrane in frame A.

As the κ-symmetry transformations of the KK-monopole action are not known at

present, it is not possible to directly verify the preserved supersymmetries of the solution.

U-duality predicts that it should have the same supersymmetry properties as its counterpart

in frame A, namely preserving half of the supersymmetries while breaking all Poincaré

supersymmetries.

3.4 Moduli space dynamics and state counting

We will now consider the moduli space dynamics of the probe solution considered above.

As in frame A, we will see that our probes experience a magnetic field on moduli space

and that the lowest Landau level degeneracy accounts for the Bekenstein-Hawking entropy.

Due to the complexity of the action (3.8), the analysis will be more involved than in frame

A. We will see that the magnetic field on moduli space now arises both from Born-Infeld

and Wess-Zumino terms in the action (3.8).

The energy of the above solutions is independent of the constant values of the world-

volume fields ω(0),A(1), ỹ1, ỹ2, hence these will give rise to the moduli of the solution. The

moduli space mechanics is obtained in a standard manner by expanding the action around

the solution (3.16) to quadratic order in the fields ω(0),A(1), ỹ1, ỹ2 and dimensionally re-

ducing to 0+1 dimensions. The quadratic action is

S2 = −τKK

∫
[

k2k̃e−2Φ
√

n

wVT 2VT̃ 2

(dỹ1 ∧ ⋆dỹ1 + dỹ2 ∧ ⋆dỹ2) +
1

2
k̃e−2Φdω(0) ∧ ⋆dω(0)

+
1

4k̃
F (2) ∧ ⋆F (2)

]

+ τKK

∫
[

P [ik̃ikN
(7)] +

1

2
P [Ã]F (2) ∧ F (2)

]

. (3.17)

where

F (2) =
dA(1)

(4π)2
+

k̃2

g
P [Ã] ∧ dω(0).

The Hodge ⋆ is to be taken with respect to the worldvolume metric

ds2
wv = l2B(−dτ2 + dθ2 + sin2 θdφ2) +

√

n

wVT 2VT̃ 2

(

(dy1)2 + (dy2)2
)

.

Note that the kinetic terms in (3.17) are not diagonal due to the mixing between A(1) and

ω(0). We will now perform the dimensional reduction along with field redefinitions so as to

obtain diagonal kinetic terms in 0+1 dimensions.

First, we dimensionally reduce over the T 2 directions y1, y2 to three dimensions. The

reduction of the field A(1) gives two Wilson lines w1, w2 from the components along y1, y2
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and a gauge field A′(1) with curvature F ′(2) = dA′(1). Next, we dualize A′(1) into a zero-

form Ã(0) by adding a term
∫

dÃ(0) ∧ F ′(2) to the action and integrating over F ′(2). This

produces a kinetic term for Ã(0) and, because of the mixing terms in (3.17), an additional

Wess-Zumino type term w/W
∫

P [Ã]∧dω(0)∧dÃ(0). After partial integrations and a further

reduction over S2, we obtain a particle action on a rectangular six-torus with coordinates

ω(0), Ã(0), w1, w2, ỹ1, ỹ2 in a magnetic field. The magnetic field strength is

FM = w 2dω(0) ∧ dÃ(0) + WVT 2dw1 ∧ dw2 +
N

VT̃ 2

dỹ1 ∧ dỹ2. (3.18)

Taking into account the periodicities of the moduli space coordinates,2 we again find three

tori with w, W and N units of magnetic flux respectively. As explained in section 2.3, the

counting of chiral primary states of the KK-monopole theory reduces to counting lowest

Landau level degeneracies and reproduces the entropy (1.2).

4. 4D-5D connection and the D1-D5-P black hole

We now discuss the relevance of the probe solutions constructed above to the description

of near-horizon microstates in five-dimensional black holes. The reason for this is that the

D1-D5-P-KK background (3.3) lends itself to a version of the 4D-5D connection which was

also at the basis of the earlier work [15, 16, 26] and which we will outline here.

So far, we have assumed the radius R̃ of the S̃1 circle to be small compared to the size

lB of the black hole. In this regime, the appropriate picture is that of a black hole in four

dimensions (1.1). We now vary the radius to the regime where R̃ ≫ lB , where the geometry

effectively looks five-dimensional and describes a five-dimensional black hole with D1-D5-P

charges (n,w,N), placed at the center of a Taub-NUT space with NUT charge W . The

relevant limit to describe this five-dimensional regime is to take the decompactification

limit keeping R̃r fixed:

R̃ → ∞; r̃2 ≡ 2R̃r fixed. (4.1)

The background (3.3) becomes

ds2
10= (HnHw)−1/2

[

− 1

HN
dt2 + HN

(

R

2
dx − (1/HN − 1)dt

)2
]

(4.2)

+W (HnHw)1/2

[

dr̃2+
1

4
r̃2

(

dΩ2
2+

(

1

W
dx̃−cos θdφ

)2)]

+(Hn/Hw)1/2(ds2
T 2 +ds2

T̃ 2)

and the harmonic functions are the correct ones for objects in five noncompact dimensions:

Hn = 1 +
g∞

4π2VT 2VT̃ 2

n

r̃2
Hw = 1 +

g∞
4π2

w

r̃2

HN = 1 +
g2
∞

4π2(2πR)2VT 2VT̃ 2

N

r̃2
. (4.3)

2The periodicity of ω(0) is 1/4π, while A
(0) has period 2π, and w1, w2 have the inverse periodicities of

y1, y1.
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For the dilaton and RR fields, we have

eΦ = g∞H1/2
n H−1/2

w

C(2) = − R

2g∞
(1/Hn − 1) dt ∧ dx − w

16π2
cos θdφ ∧ dx̃ (4.4)

In five dimensions, the metric in the Einstein frame reads

ds2
5 = −(HnHwHN )−2/3dt2 + (HnHwHN )1/3W

[

dr̃2 +
1

4
r̃2

(

dΩ2
2+

(

1

W
dx̃ − cos θdφ

)2)]

.

(4.5)

This metric describes a three-charge black hole placed in an orbifold space R4/ZW . The

Bekenstein-Hawking entropy is

S5 = 2π
√

nwNW. (4.6)

The special case W = 1 yields the five-dimensional black hole in flat space (1.3).

The 4D-5D connection described above leads to an explicit construction of the near-

horizon microstates of the 5D black holes (4.5). Since the modulus R̃ is, as we have seen, a

fixed scalar, the near-horizon geometry reduces to (3.4) for any value of R̃. In particular,

starting from (4.2), (4.4) and taking the limit

α′ → 0;
r̃2

α′3/2
,

R√
α′

,
VT 2

α′
,
VT̃ 2

α′
fixed (4.7)

and making similar coordinate changes as before, we obtain precisely the same near-horizon

geometry (3.4) as in frame B. Hence the construction of the near-horizon microstates can

be taken over from section 3.4. They are again given by horizon-wrapping KK-monopoles,

whose moduli space dynamics contains a magnetic field (3.18). As mentioned above, we are

particularly interested in the case W = 1 describing the D1-D5-P black hole in flat space.

The counting of lowest Landau degeneracies involves solving the harmonic equation (2.15)

on a product of two tori with magnetic fluxes w and N and a two-torus with one unit

of magnetic flux coming from the Hopf bundle on S2. The construction of the harmonic

forms in section 2.3 can be applied in this case and, proceeding as described there, the

microscopic counting reproduces the Bekenstein-Hawking entropy (1.4).

We end with some further remarks:

• We should remark that the near-horizon scaling limit (4.7) differs from the one that

is standard from the point of view of AdS3/CFT2 duality in that we are treating

the S1 radius R on the same footing as the other compact coordinates, focusing on

energies small compared to 1/R. The AdS3/CFT2 scaling limit would instead keep

fixed r̃/α′, R, VT 2/α′ and VT̃ 2/α′. From that point of view, the limit we have taken

can be seen as an additional ‘very near horizon limit’ as described in [27].

• The calculation above is valid for a black hole ‘mostly made up out of D1-branes’

where the D1-charge n is parametrically larger than the other charges. From (3.6) we

see that the supergravity description is reliable in this regime provided that gw ≫ 1.
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• In the S-dual picture, where the black hole consists of wrapped fundamental strings

and NS5-branes and momentum, the relevant probe configurations are again wrapped

KK monopoles, this time carrying induced fundamental string charge by turning on

momentum conjugate to ω(0).

• One can also find the relevant probe configurations when other charges are large by

dualizing the relevant configurations in frame A. For large D5-charge w the probe

solution is again a KK-monopole, this time wrapped on S̃3/ZW × T̃ 2. For large

momentum N , one finds a D5-brane on S̃3/ZW and T̃ 2 with momentum along S1,

which can be interpreted as a giant graviton.

5. Discussion and outlook

In this paper, we have used U-duality and the 4D-5D connection to construct microstate

probe solutions in the near-horizon geometry of the D1-D5-P black hole. The relevant

configurations are bound states of D1-branes that have expanded through the Myers effect

to form a Kaluza-Klein monopole wrapping the black hole horizon. They are static with

respect to the time coordinate adapted to the L0 generator of the ‘left-moving’ SL(2, R)L,

and hence are expected to correspond to bound states rather than fragmentation modes of

the system [29]. It would interesting to study in more detail the superconformal quantum

mechanics describing the low-energy dynamics of the probes in the case W = 1, where

the right-moving U(1) symmetry is enhanced to SO(3)R. In [7], a refined version of the

near-horizon microstate approach was proposed, where it was argued that the probe brane

quantum mechanics arises from the moduli space quantization of a multicentered solution.

It would be of interest to study the the analogous ‘deconstructed’ black hole solutions and

their moduli space in the case of the five-dimensional D1-D5-P black hole. As in [7], this

is likely to provide a natural explanation for the fact that the probe branes are static with

respect to the specific time coordinate τ .

The fact that the relevant near-horizon probes are KK-monopoles is also interesting

in itself. In the approach advocated by Lunin and Mathur [12], the nonsingular microstate

geometries in the D1-D5 system are due to the expansion of D1 and D5 branes into KK

monopole supertubes [28]. It will be interesting to see if and how both approaches are

related.

The probe solutions were constructed in the near-horizon geometry of the black hole

which includes a quotient of AdS3 (with the geometry of a BTZ black hole) and should be

viewed as an averaged geometry describing an ensemble of microscopic states, correspond-

ing to a density matrix in the dual CFT [30]. The probe solutions we have considered

could be seen as adding black hole ‘hair’ to this averaged geometry. The states in the en-

semble we considered are characterized by microscopic quantum numbers consisting of the

wrapped KK-monopole charge and the angular momentum quantum numbers labelling the

lowest Landau level groundstates. It would be interesting to identify these states within the

known ensemble of microstates in the dual CFT. Such a comparison is obscured by the fact

that the averaged near-horizon geometry has less symmetry than the dual CFT because
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of the quotienting of AdS3. It could therefore be interesting to study the limit where the

momentum N is much larger than the other charges where, as one can see from (3.4), the

AdS3 symmetries are approximately restored. As we remarked in section 3.4, the relevant

probe solutions in this regime are a kind of giant gravitons. It would also be interesting

to study the relation of such solutions to other giant graviton configurations constructed

recently in [31, 32].
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